LTE a что это такое в телефоне

Пересказ публикации д-ра Stamatis Georgoulis, Aeroflex Limited «LTE to LTE-Advanced: What You Need to Know Right Now». В принципе, ничего принципиально нового.
Переход от LTE к LTE-A обещает преимущества, как для оператора, в плане сокращения OPEX/CAPEX и повышения коэффициента использования спектра, так и для абонента в плане роста скоростей передачи данных и емкости сети.
LTE-A обещает возможность получения подлинной подключенности 4G, впервые могут быть соблюдены требования к IMT-Advanced. Какие проблемы LTE следует разрешить, чтобы иметь возможность эволюционировать к LTE-A? Как начать пользоваться преимуществами решения уже с первых шагов?
В статье обсуждаются основные драйверы, которые стимулируют быстрый переход к LTE-A, те преимущества, которые ожидаются с учетом быстрого роста спроса на смартфоны, а также тех проблем для владельцев сетей, которые с этим связаны. Также рассматривается, как именно LTE-A помогает оператору сократить OPEX и CAPEX, а также как это позволяет операторам лучше использовать дорогой и фрагментированный спектр для улучшения качества покрытия и емкости сети.
LTE-A также помогает операторам справляться с задачей повышения энергоэффективности технологий связи, в статье показано, как этого можно добиться. В статье уделено внимание практически всем новым технологическим компонентам, которые ассоциированы с LTE-A — агрегации частот, MIMO, само-организующиеся сети, управление интерференцией.
LTE-A. Когда и что
LTE-A уже с нами и сейчас пора обсудить преимущества данной технологии. Основная причина в том, что LTE-A не только обещает ускорение передачи данных, но также может справиться с удовлетворением массового спроса на услугу передачи данных, которую формируют пользователи. Растущим объемом трафика мы обязаны росту распространенности мобильных устройств, включая смартфоны и планшеты, росту популярности приложений, особенно приложений социального взаимодействия, которые требуют постоянного подключения. Как только пользователь обзаводится смартфоном, его профиль потребления начинает изменяться в сторону увеличения объема трафика, по мере того, как пользователь осваивает различные возможности своего устройства и скачивает на него приложения. В свою очередь этот процесс приводит к росту спроса на непрерывное покрытие, включая покрытие в зданиях и услуги связи в общественном транспорте. Согласно известному отчету Cisco, в последние годы число мобильных подключений превысило население планеты и сейчас составляет около 7 млрд, как показано на рис.1.


Преимущества LTE-A
Итак, как LTE-A может помочь нам в решении известных проблем? Прежде всего, эта технология позволяет улучшить покрытие и емкость сети, два ключевых параметра, которые сказываются на пользовательском опыте. Не менее важно то, что оператор сможет сэкономить на операционных и капитальных затратах, что позволит компании сохранять прибыльность. Преимущества технологии, которые присущи LTE-A обещают возможность более быстрого внедрения и быстрого обнаружения и решения проблем. Это обеспечит для абонентов возможность более быстрого подключения, вырастет качество подключения и возможность получения доходов оператором.

В настоящее время в распоряжении операторов дорогой, но фрагментированный спектр. Вместе с тем, стоит задача возврата инвестиций, которую не получится решить без аггрегации фрагментов спектра и их совместного использования. О способах агрегации мы еще поговорим, но важно понимать, что агрегация частот (CA — carrier aggregation) — это ключевой компонент LTE-A, который позволяет эффективно использовать частоты.
Наконец, есть востребованность со стороны отдельных потребителей и общества в целом в отношении того, чтобы технологии сотовой связи и мобильного ШПД становились более «зелеными». Энергосбережение, кроме того, имеет под собой и экономическое обоснование. Использование технологий компенсирующих интерференцию в LTE-A с целью улучшения сигнала на краях сот, в комбинации с использованием самооптимизации сетей, а также большого числа малых сот в гетерогенной сети, обеспечивает существенный позитивный вклад в энергосбережение по-сравнению с 3G и LTE.
Кроме перечисленных фич, есть и еще более эффективные технологии, например, растущее использование трекинга пакетов или технология Догерти в усилителях мощности базовых станций, что также обеспечивает дополнительное энергосбережение. Релейное включение в LTE-A также из числа энергосберегающих мер, например, релейная станция может (RN — relay node) может оставаться в «спящем» режиме, если она не востребована.
Преимущества LTE-A перед LTE
1. Агрегация частот.
— высокая скорость передачи данных
— улучшенная емкость
— гибкость в использовании спектра
— лучше покрытие
2. MIMO более высоких порядков
— высокая скорость передачи данных
— эффективность использования спектра
3. SON / умная гетерогенная сеть
— улучшение покрытия
— улучшение энергоэффективности
— сокращение OPEX и CAPEX
— улучшенное качество пользовательского опыта
— лучше общая емкость сети
— быстрее развитие сети
4. Управление интерференцией
— ниже стоимость использования данных
— лучше покрытие
— лучше качество пользовательского опыта
— улучшенная энергоэффективность
— лучше общая емкость сети
5. Релейное включение
— лучше покрытие
— лучше качество пользовательского опыта
— улучшенная энергоэффективность
— быстрее развитие сети
Что такое 4G?
Хотя операторы и продают LTE, как технологию 4G, в действительности мы имеем дело определенной задержкой в переходе к новому поколению. Так же, как «мобильный интернет», который начали предлагать еще в 1990 году на базе E-GPRS, стал реальностью только после появления 3G WCDMA, мобильный ШПД стал реальностью только после появления 3.5G HSPA, а не в момент появления 3G. Высокая емкость и возможность непрерывной подключенности, которые ожидались от HSPA, стали реальностью только с появлением LTE. Таким образом, настоящее функционирование 4G станет реальностью только с появлением LTE-A. Можно утверждать, что LTE — это прототип LTE-A.
Международный Союз Электросвязи (ITU) предложил список рекомендаций, которым должна отвечать IMT Advanced 4G. Цель — обеспечить гибкое, глобальное, непрерывное мобильное подключение на основе сети all-IP с масштабируемой полосой частот и высокой спектральной эффективностью, одновременно с обеспечением низкой задержки и быстрой мобильности. Цели по скорости — 100 Мбит/с в мобильном режиме и до 1 Гбит/с в пиковом режиме. В 3GPP назвали спецификацию с такими параметрами — LTE-A, который описан, как Rel.10 3GPP LTE. В таблице ниже приведено сравнение рекомендаций ITU, параметров, которые обеспечивает LTE Rel.9, а также LTE-A.


Технологические энейблеры LTE-A
LTE-A стала возможной благодаря набору технологических энейблеров, каждый из которых обеспечивает улучшение характеристик по-сравнению с LTE. Основые энейблеры таковы:
Агрегация частот (CA)
Комбинируя блоки частот, которые называют компонентными несущими (CC), как показано на рисунке, агрегация частот позволяет использовать фрагментированный спектр и позволяет LTE-A соответствовать требованиям IMT-Advanced, прежде всего, требованию обеспечивать скорость передачи данных 1 Гбит/с.
Агрегация частот может быть обеспечена за счет апгрейда железа, а также при обеспечении совместимости вниз с 3GPP Rel.8. Агрегация частот обеспечивает гибкость использования спектра, но речь идет не только о использовании нескольких полос частот 20 МГц, можно также агрегировать небольшие, несмежные полосы частот. Таким образом, полоса частот может заметно измениться, что отвечает потребностям индивидуальных пользователей.
Однако, обеспечение поддержки CA в абонентских устройствах — это действительная проблема.

MIMO более высоких порядков (HOM)
Более высокие порядки MIMO (на рисунке 4) позволяют повысить спектральную эффективность, в терминах бит/с на Гц. Но для этого опять же требуется апгрейд железа. MIMO более высоких порядков обеспечит LTE-A с до 8 одновременных потоков передачи, обеспечивающих спектральную эффективность в аплинке и даунлинке для исполнения спецификаций IMT-A. Возможно использовать несколько хитрых схем для аплинка и даунлинка, как в случае одиночных, так и множественных пользователей. MIMO требует использования множественных антенн, как на базовых станциях, так и на абонентских устройствах — 8 потоков потребуют 8 раздельных антенн на устройстве. В комбинации с множественными радио, что также предусматривается в LTE-A, это означает, что мобильные устройства в конце концов могут стать похожими на «дикобраза».
Релейное включение
Релейные включения — это эффективный по цене способ расширить покрытие в зонах, где обеспечение фиксированного ШПД не является экономически оправданным. Можно подключать цепочку базовых станций, которые выступают в качестве релейных станций в опорной сети. Релейная база выступает в качестве абонентского устройства в донорной макросоте. Использование такой схемы позволяет быстро развернуть сеть, сохраняя низкую стоимость оборудования по-сравнению с использованием традиционной опорной сети. Использование релейных включений — это эффективный обмен емкости соты на площадь покрытия.
Самоорганизующиеся/самооптимизирующиеся сети (SON)
SON обеспечивает эффективное использование гетерогенных сетей (HetNets), гибридных сетей, которые включают малые соты для улучшения покрытия и емкости, обеспечиваемой традиционными макросотами. Несколько малых сот могут быть размещены в макросоте, используя те же частотные диапазоны, чтобы заполнить гэпы в покрытии и обеспечить дополнительную емкость.
Эффективное использование SON может сократить OPEX, а также нарастить емкость. Однако, если вести развитие сети хаотично, могут возникать проблемы. Необходима координация для того, чтобы избежать потери емкости. Необходима динамическая адаптация, чтобы максимизировать достигаемый эффект.

Некоторые элементы SON, такие, как сообщения CGI и автоматическое распознавание соседей (ANR — Automatic Neighbor Recognition), уже были внедрены в Rel.8, в Rel.9 есть улучшения RLF. Но если LTE обеспечивает базовые показатели, то LTE-A, где появился интерфейс X2, обеспечивающий возможность обмена информации; улучшенная координация интерференции между сотами; баланс нагрузки; минимизация необходимости драйв-тестов (MDT); само-исправление; энергосбережение. В релизе 11 предусмотрено также Coordinated Multipoint (CoMP).
Рис.3 Три из множества возможных для LTE-A сценариев агрегации частот, где частота f1 показана серым, а f2 — голубым: (a) f1 использована для наращивания покрытия, а f2 использован для наращивания скорости передачи данных (f2>f1)
(b) Обе частоты использованы для наращивания пропускной способности соты;
(c) f1 обеспечивает макро-покрытие и f2 используется для увеличения пропускной способности в хотспотах.
Управление интерференцией (IM)
Управление интерференцией — это еще одна фича LTE-A, которая достигается апгрейдом ПО, которая может обеспечивать увеличение спектральной эффективности (измеряемой в битах/с на Гц/кв.км). Это обеспечивает выигрыш за счет более эффективного совместного использования частот в заданной зоне. Фича является динамической и может работать в диапазоне до 100 мс.
Улучшенное подавление межсотовой интерференции (eICIC) представляет наращивание технологий управления интерференцией, которая использовалась в LTE Rel 8 и Rel 9. Отличие в том, что этот процесс не прозрачен в отношении абонентских устройств и таким образом необходимо вести его тестирование, например, с помощью Aeroflex TM500 Test Mobile.
eCIC требует координации между каждым из узлов сети, которые коммуницируют друг с другом по интерфейсу X2. В типичном случае макросоты, чьи зоны покрытия перекрываются с зонами покрытий одной или нескольких малых сот, могут координировать передачу с этими узлами. Это поможет сократить интерференцию, вызванную абонентскими устройствами в данных сотах в некоторых подкадрах, за счет ограничения передачи макросот до DL Common Reference Signal (CRS), без передачи данных, во время некоторых сабфреймов — этот режим называется Almost Blank Subframes (ABS) — почти пустые сабфреймы. Это снижает интерференцию на краю соты, образованной микро-сотой или пикосотой, а также обеспечивает возможность для микро- и пикосоты формировать «расширение радиуса соты», увеличивая зону покрытия во время этих сабфреймов.
Итоги
Все улучшения, которые появляются в LTE-A — SON, IM, малые соты, HetNets — обещают существенные выигрыши для операторов и подписчиков. Все эти компоненты, если их внедрить одноврменно, повышают спектральную эффективность, увеличивают емкость и покрытие, а также позволяет сети обслуживать большее число устройств более эффективно.
Эти улучшения достигаются за счет комбинации программных апгрейдов и эффективных по затратам замен железа. Комбинированный эффект обеспечивает выигрыш в емкости в 2.2 раза (рел.10 HetNet) по-сравнению с сетью, в которой используются только макросоты. Вдобавок преимущества LTE-A самоочевидны и ощутимы. Пользователям эта технология обещает общее улучшение качества опыта и снижения стоимости передачи данных. Оператор выиграет от сокращения OPEX и CAPEX за счет использования «интеллектуальности» HetNets, опции, которая сейчас внедряется. А также за счет дальнейшего повышения эффективности по мере развития железа. Производители сетевых решений уже способны обеспечить улучшения для интеллектуальных сетей HetNets, за которыми вскоре последуют CA и MIMO высоких порядков.

Расчет скорости передачи данных в LTE

  • Главная
  • О 5G
  • Об LTE
  • Вебинары
  • Книги

Калькулятор для расчета скорости передачи данных в LTE

Общая информация

Перед тем как расчитывать скорость передачи данных в сети LTE рассмотрим основные параметры, которые на нее влияют. К таким параметрам относятся следующие:

  • Ширина канала (bandwidth)
  • Качество канала, то есть в каких радиоусловиях находится абонент
  • Загрузка сети (то есть сколько активных пользователей в сети и сколько данных они передают).

Теперь рассмотрим каждый из этих параметров подробнее.

  • Ширина канала. Согласно 3GPP спецификациям ширина канала в сети LTE может быть 1.4, 3, 5, 10, 15, 20 МГц. Чем больше ширина канала, тем более высокие скорости передачи данных можно достичь. Весь доступный диапазон разбивается на ресурсные блоки (Resource Blocks, RB). Ниже приводится таблица для определения количества доступных ресурсных блоков в зависимости от ширины канала.
  • Качество канала. Радиоусловия, в которых находится абонент, существенным образом влияют на скорости передачи данных. Чем лучше радиоусловия, тем более высокие скорости передачи. Базовая станция (БС) выбирает кодово-модуляционную схему (MCS — Modulation and Coding Scheme) в зависимости от текущих радиоусловий. Чем выше кодово-модуляционная схема, тем больше данных (бит) может быть передано в единицу времени. Мобильная станция (МС) измеряет качество канала и отправляет CQI (Channel Quality Indicator) базовой станции. Используя эту информацию, БС выбирает кодово-модуляционную схему для передачи согласно следующей таблице.

    Так же в зависимости от радиоусловий могут использоваться различные многоантенные технологии (MIMO — Miltiple Input Multiple Output), например, MIMO 2×2 или MIMO 4×4. Эти технологии позволяют увеличить скорости передачи данных практически в два раза или в четыре, соответственно.
  • Загрузка сети. Все доступные радиоресурсы разделяются между пользователями, которые находятся в сети. Соответственно чем больше в сети активных пользователей, тем меньше радиоресурсов достается одному пользователю. Следует отметить, что распределение ресурсов также зависит от приоритета пользователей и текущих соединений.

Расчет пропускной способности в LTE

Для расчета пропускной способности сети LTE необходимо выполнить следующие шаги:

  1. Определяем/задаем ширину канала. Это может быть 1.4, 3, 5, 10, 15 или 20 МГц. Затем, используя это число, определяем количество ресурсных блоков по таблице выше.
  2. Определяем/задаем качество радиоканала. Для расчета пропускной способности нам нужно определить номер модуляционно-кодовой схемы (MCS Index). Номер модуляционно-кодовой схемы зависит от состояния радиоканала. В LTE обычно этот номер определяется значением CQI (Channel Quality Indicator). Однако, таблица для пересчета CQI в номер модуляционно-кодовой схемы задается производителем оборудования и является закрытой информацией. Так как в нашем расчете мы расчитываем максимальную скорость передачи данных, предполагаем наилучшие радиоусловия. Далее используем следующую таблицу.

    где TBS означает Transport Block Size, то есть размер транспортного блока. Этот размер определяет какое количество данных (в битах) может быть передано в одном TTI (=1 мсек).
  3. И последний шаг это посмотреть в таблицу с размерами транспортных блоков, чтобы определить сколько бит может быть передано в одном 1 TTI (для этого нужно будет также количество ресурсных блоков), и умножить число из таблицы на 1000, чтобы получить бит/с.

Калькулятор для расчета скорости передачи данных в LTE

Пример

Предполагаем, что в нашей сети находится только один абонент, ширина канала у нас 20 МГц и идеальные радиоусловия (такие предположения позволяют получить максимальную скорост передачи данных в сети LTE), далее
Количество ресурсных блоков при нашей ширине канала = 100
MCS Index = 28 и TBS Index = 26
Используя эти числа, получаем TBS = 75376 бит. Скорость передачи = 75376 * 1000 = 75.376 Мбит/с. Предположим, что также используется MIMO 2×2. Отсюда получаем 75.376*2 = 150.752 Мбит/с. Следует отметить, что в стандарте 3GPP есть отдельные таблицы размеров транспортных блоков для случаев с использованием MIMO.
Если вы не нашли интересующую вас информацию по LTE/LTE-A в этой статье, напишите мне об этом письмо на alexey.anisimov86@gmail.com. Я постараюсь ее добавить в кратчайшие сроки.

История

Технология LTE пережила целый ряд этапов развития с момента выхода первоначального стандарта, принятого консорциумом 3GPP — так называемого 3GPP Релиза 8. Для дальнейшего улучшения эксплуатационных характеристик и расширения возможностей технологии в апреле 2008 года консорциум 3GPP начал работу над Релизом 10. Одной из задач было достижение полного соответствия технологии LTE требованиям стандарта IMT-Advanced, установленного для 4G Международным союзом электросвязи, что позволило бы с полным правом называть LTE технологией 4G.

LTE-Advanced предусматривает расширение полосы частот, агрегацию (нескольких полос, в том числе не соседних) спектра, имеет расширенные возможности многоантенной передачи данных MIMO, поддерживает функции ретрансляции сигнала LTE, а также развертывание гетерогенных сетей (HetNet).

9 октября 2012 года Yota первой в России запустила технологию мобильной связи LTE-Advanced на коммерческой сети. В запуске участвуют 11 базовых станций.

25 февраля 2014 года МегаФон запустил в пределах Садового кольца Москвы сеть LTE-Advanced с максимальной скоростью до 300 Мбит/с на загрузку к абоненту и 50 Мбит/с от абонента, назвав эту сеть в маркетинговых целях 4G+.

5 августа 2014 года Билайн запустил в Москве сеть LTE, объединяющую 2 диапазона Band 7 (2,6 ГГц) и Band 20 (800 МГц) с максимальной скоростью до 115 Мбит/с на загрузку к абоненту.

> Примечания

Как правильно выбрать смартфон с LTE

Каждый, кто покупал смартфон за границей, мог столкнуться с тем, что новенький и полностью работоспособный гаджет почему-то отказывается функционировать в российских сетях 4G. Проблема в том, что сети четвёртого поколения строятся в самых разных частотных диапазонах. А девайсы, как правило, выпускают под тот или иной набор этих диапазонов, а не под любые возможные диапазоны и их комбинации. Чтобы не пожалеть о покупке, нужно разбираться в некоторых технологических деталях, и мы попробуем вам в этом помочь.

Говоря о правильном выборе смартфона, в этот раз мы не имеем в виду платформу, на которой он собран, особенности операционной системы или камеру. Сосредоточимся на параметрах, обеспечивающих наилучшую работу вашего аппарата в сетях 4G/LTE. Это особенно важно для всех, кто активно пользуется мобильным Интернетом. Пользовательский опыт в сети LTE обычно заметно отличается от пользовательского опыта в сети 3G, даже в варианте HSPA+. Проще говоря, если вы в зоне уверенного покрытия LTE, а гаджет поддерживает современные режимы передачи данных, у вас, что называется, «всё летает». А вот о том, какие характеристики смартфона важны для достижения максимальной скорости — читайте в статье.

Частоты LTE: что это за бэнды и почему они важны?

Почему вообще нужно чем-то заморачиваться, ведь мы же не выбираем смартфоны по особенностям их работы с 3G? Всё просто. Для технологий 3G/WCDMA в мире закреплена полоса частот в диапазоне 2100 МГц. Поскольку этих частот не хватает, кое-где для 3G применяется также диапазон 900 МГц. В большинстве случаев любой современный аппарат поддерживает работу в 3G в обоих этих диапазонах. «Чистый» 3G сейчас нигде не используется, поэтому смартфон должен также понимать такие «расширения» технологии, как HSPA и HSPA+, ускоряющие работу с мобильным Интернетом. Чаще всего новые девайсы поддерживают и эти технологии.

Иное дело с LTE. Данный стандарт изначально подразумевал возможность построения сетей связи и мобильного Интернета в самых разных частотных диапазонах. В мире их используется больше десятка, причём в разных странах — разные комбинации частот. Ещё и не каждый оператор поддерживает одинаковый набор диапазонов даже в пределах одной страны. В России набор используемых частотных диапазонов LTE не так уж велик. Тем не менее, покупая смартфон за границей (например, в интернет-магазине), можно остаться без 4G из-за несовместимости приобретённого аппарата с той или иной нашей сетью.

Чтобы такого не произошло, желательно выбирать гаджет, исходя из того, какие частоты LTE поддерживает оператор в вашем регионе. Ситуация со временем меняется, операторы обзаводятся всё новыми частотами, поэтому задумываться о совместимости следует каждый раз, когда вы покупаете новый девайс.

Распределение частот в Москве (источник PicoCell)

На сегодня в России операторы «большой четвёрки» располагают сетями LTE в следующих основных диапазонах: 1800 МГц (b3), 2,5-2,7 ГГц (b7), 800 МГц (b20). Буква b c числом, приведённые в скобках — это «бэнд», название диапазона по классификации международной группы 3GPP, занимающейся разработкой стандартов LTE. Перечисленные диапазоны применяются для организации сетей FDD LTE с так называемым частотным разделением каналов, когда входящий и исходящий потоки данных идут на разных частотах. Есть также технология TDD с временным разделением каналов: когда входящий и исходящий потоки данных поочередно гоняются между аппаратом и сетью с использованием одной и той же полосы частот. В России эта технология также используется. Задействованный под неё диапазон — 2,5-2,6 ГГц (b38).

OnePlus 5 — смартфон, поддерживающий диапазоны b1/2/3/4/5/7/8/12/17/18/19/20/25/26/28/29/30/38/39/40/41/66

Резюме: какие частоты нужны в России. В идеале ваш смартфон должен в обязательном порядке поддерживать диапазоны b3 и b7 — это основа хорошего мобильного Интернета. Желателен диапазон b20: есть места, где он — единственная возможность получить доступ к LTE. Что касается b38, то его можно сравнить с вишенкой на торте — жить без неё можно, но как украшение не помешает.

Категории CAT: чем выше, тем быстрее

Куда важнее другой аспект, которому стоит уделить внимание при выборе нового аппарата. Сегодня сети LTE зачастую поддерживают работу смартфонов сразу в нескольких частотных диапазонах одновременно. Принято называть такой режим работы агрегацией частот (LTE-A). Гоняя данные сразу в нескольких частотных диапазонах, можно достичь более высоких скоростей скачивания и передачи информации. Однако для того, чтобы эта схема работала, необходимо выполнение нескольких условий. В той точке, где вы сейчас находитесь, должно наблюдаться покрытие сразу в нескольких частотных диапазонах LTE, оборудование оператора должно быть настроено на работу с устройствами с поддержкой LTE-A, а ваш смартфон — поддерживать LTE-A, причём именно тех комбинаций частот, которые предоставляет оператор. Звучит крайне сложно? На деле задумываться об этом следует только в момент покупки девайса.

А вот ещё на одну особенность стоит обратить внимание. Речь идёт о так называемой категории устройства. Обычно она отмечена однозначным или двузначным числом от 0 до 17. До недавнего времени считалось, что поддержки смартфоном категории Cat.3 вполне достаточно для пользования услугами LTE в России. Сегодня планка «достаточно» поднялась до Cat.4 (теоретически поддерживаются скорости до 150 Мбит/c), а для любителей самого быстрого Интернета следует рекомендовать девайсы с поддержкой режима агрегации частот, что соответствует категории Cat.6. (до 300 Мбит/c). Число в скобках — так называемые пиковые скорости. Скачивать данные с такими скоростями в реальной жизни не получится, но высокие пиковые скорости, как правило, оборачиваются более высокими средними скоростями скачивания информации.

Категории устройств и скорости передачи данных

Категория абонентского устройства

Максимальная скорость скачивания данных, Мбит/c

Поддержка агрегации несущих, МГц

3х20

3х20*

* большая скорость в той же полосе достигается за счет использования дополнительных технологических ухищрений (4×4 MIMO и 256QAM).

В ближайшие годы развитие сетей связи будет фрагментированным: где-то начнётся внедрение 5G, но сети LTE останутся с нами ещё надолго и будут совершенствоваться, как и смартфоны.

Samsung Galaxy S8+ и Sony Xperia XZ Premium относятся к устройствам Cat.16, однако сетей поддерживающих их на максимальной скорости в России пока нет

Резюме: какие категории нужны в России. Сегодня в России LTE-A есть далеко не везде, но постепенно поддержка этого режима охватывает всё большие территории, так что мы рекомендуем приобретать аппараты с поддержкой LTE-A Cat.4 и Cat.6. Если вы живёте в Москве и Санкт-Петербурге, пользуетесь «МегаФоном» и хотели бы получить от сети максимум возможного, то можно брать аппарат с Cat.9 или Cat.12. Такой смартфон порадует вас и в зарубежных поездках — в некоторых странах сети Cat.12 уже запущены.

Ширина полос: чем шире, тем качественнее и быстрее

Ещё одно важное правило: чем шире частотная полоса, которая есть у оператора в том или ином диапазоне, тем на более качественную услугу можно рассчитывать. То есть в сети с полосой 5 МГц средние скорости чаще всего меньше, чем в сети с полосой 20 МГц. Это зависит также от числа пользователей — чем их больше, тем средние скорости меньше. Есть зависимость даже от тарифных планов — если они включают большие пакеты трафика в месяц, то средняя скорость опять же может оказаться меньшей, чем в пустой сети с узкой полосой. В регионах ситуация с частотами нередко разнится даже у одного и того же оператора (особенно это касается диапазона 1800 МГц).

Ширина частотных полос у операторов

B20, 800 МГц

B3, 1800 МГц

B7, 2,5-2,7 ГГц

B38, 2,5-2,6 ГГц

«МТС»

5 МГц

до 25 МГц

10 МГц

20 МГц

«МегаФон»

5 МГц

до 30 МГц

40 МГц

25 МГц

«ВымпелКом»

5 МГц

до 20 МГц

10 МГц

нет

5 МГц

до 15 МГц

10 МГц

нет

* в разных населённых пунктах частоты диапазона задействованы с разными полосами или не задействованы под LTE вовсе.

Резюме: в целом эта табличка отражает даже не среднюю температуру по больнице, а скорее «сферического коня в вакууме», поскольку в каждом населённом пункте, даже в каждом районе города ситуация характеризуется своим набором задействованных для LTE полос частот. Перед покупкой аппарата неплохо уточнить у своего оператора, в каких именно частотных диапазонах работает сеть LTE в вашем городе или населённом пункте. Нужно также помнить, что на конечную скорость влияют другие факторы: погодные условия, загруженность сети в данный момент, ограничения вашего тарифного плана.

Записи созданы 1575

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Начните вводить, то что вы ищите выше и нажмите кнопку Enter для поиска. Нажмите кнопку ESC для отмены.

Вернуться наверх